

The New Frontier: The Emerging Renewable Energy Landscape

Darren Bouton, First Solar

July 14, 2009

- Climate Change
- Air Quality
- Fuel diversity
- National Security
- **Economic Stimulus**
- **Green Jobs**

BLM Renewable Land Applications Overview

Total Wind Applications: 253

- California alone has 107 solar applications
- Solar applications comprise over 2.3 million acres
- 75 solar projects are listed on BLM website, 1/3 of all applications, total 51.6 GW
- Of the 223 applications, only 3 have progressed to stage of environmental review
 - the real "make or break", when it comes to issuing permits

How do we get there?

Utility-Scale

Ground Mounted Systems
Typically Multi-MW

Distributed Generation

Roof Mounted Systems
30kW to MW+

Development Challenges for Large-Scale Solar

Development Challenges for Large-Scale Solar

Stakeholder Perspective

- Land use requirements
- Impact on habitat / species
- Water use
- Carbon footprint
- Visual impacts
- Cost

Developer Perspective

- Available land
- Solar insolation
- Proximity to transmission lines & load centers
- Terrain / topography (e.g., appropriate slope)
- Multiple planning processes (federal, state, local)
- Cost / time to construct

All Solar Technologies Are Not Created Equal

First Solar Confidential & Proprietary

Land Use Requirements

Site:

System Size:

Project Developer: Dimbach, Germany

1.4MW

Blitzstrom/Beck Energy

Site:

Colorado Springs, CO USA (Ft. Carson)

System Size: 2MW

Project Developer: Conergy

Site:

Narbonne, France

System Size:

7 MW

Project Developer:

EDF Energies Nouvelles

Land Use Requirements

El Dorado PV Power Plant

- Constructed next to existing natural gas plant
- Constructed in less than 5 months 137 days
- 48 MW expansion to begin in 2009

Site: Nevada, USA

System Size: 10 MW (AC)

Completed: December 2008

System Purchaser: Sempra Generation

Impact on Habitat / Species Site Development Options

Water Use

- Water Use Estimates for a 400 MW Solar Thermal facility provided to the CEC:
 - 75-150 Acre Feet per Year (AFY) for construction for a 400 MW facility
 - (translates to 104-207 AFY for a 550 MW facility)
 - 100 AFY during 25 year operation of such facility
 - (translates to 138 AFY for 550 MW facility)
- Estimates for First Solar's 550MW Solar PV facility include:
 - 20 AFY during construction
 - 2/10^{ths} of an AFY during 25 year operation of the PV Facility

Carbon Footprint

Global Warming Potential

Sources: *de Wild-Scholten, M., presented at CrystalClear Final Event in Munich on May 26, 2009. **de Wild-Scholten, M., 'Solar as an environmental product: Thin-film modules – production processes and their environmental assessment,' presented at the Thin Film Industry Forum, Berlin, April, 2009. Both PV technologies use insolation of 1700 kWh/m². All other data from ExternE project, 2003; Kim and Dale, 2005; Fthenakis and Kim, 2006: Fthenakis and Alsema, 2006; Fthenakis and Kim, in press.

Visual Impacts

Solar Insolation with Transmission Overlay

Solar Insolation > 6.0 kWh/m2/day

Previous Plus Slope < 3%

Previous Plus Slope <1%

Solar Insolation "unfiltered"

Multiple Efforts to Identify Appropriate Transmission Corridors and Renewable Energy Zones

- Renewable Energy Transmission Initiaitive (RETI) -- CA
- Desert Renewable Energy Conservation Plan (DRECP) -- CA
- Western Renewable Energy Zones Initiative (WREZ) -- WGA
- Solar Programmatic Environmental Impact Statement (PEIS) -- BLM
- Other

Development Opportunities for Large-Scale Solar

Developer Opportunities

- Avoid areas with high environmental sensitivity
- Prioritize use of previously disturbed non-prime agricultural land and/or where construction of solar plants would be an accepted land use
- Limit site disruption to the minimum required to safely and efficiently construct
- Enable potential compatibility with key wildlife species on-site
- Use of on-site and off-site mitigations to reduce wildlife impacts
- Limit water use in construction and operation
- Minimize visual obtrusiveness (e.g., low-profile technologies, buffer zones)

Agency Opportunities

- Coordinate state, regional, and national transmission and renewable energy planning efforts
- Coordinate permit approvals (federal, state, local) to minimize duplicative efforts
- On federal lands, provide clear direction for wildlife impact mitigation plans
 - Use established Resource Management Plans where appropriate to avoid "run away mitigation"
- Allow flexibility in mitigation options
 - Expanded pool of land conservation organizations
 - In-lieu fees
 - Land banks
- Recognize that all technologies "are not created equal" and prioritize projects with multiple environmental benefits
- Staff field offices appropriately to deal with the renewable energy "gold rush"